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ON PLANE NUCLEAR VORTEX
V.G .Kartavenko, V.V.Pupyshev, P.Quentin*

We analyze the pure vortical motion in nuclear systems excluding the usual
approximation on smallness of the excitation amplitude and the additional as-
sumptions on the shape of a nuclear system. The equations to describe a non-
linear plane nuclear vortex are presented in the frame of nuclear hydrodyna-
mics. The evolution of the shape of a vortex is analogous to a propagation of a
nonlinear dispersion wave in a plane. These states can be considered as a gene-
ralization of elliptic Kirchhoff vortex. We have proved that the solutions having
the symmetry relative to the turn by an angle 2x// with integer parameter
1= 2,3, 4... can exist. These vortexes seem to be two-dimensional analogues to
the rotating nuclear systems having stable quadrupole, octupole, hexadecupole
deformations accordingly.

The investigation has been performed at the Bogoliubov Laboratory of Theo-
retical Physics, JINR.

O nj0ckoM IaepHOM BUXpeE

B.I"'Kaprasenxko, B.B.Ilynnumes, ¢.Kaurex

YucTo BMXPEBOE JBMXXEHUE B STICPHBIX CHCTEMAX aHanu3upyercs 6e3 nc-
NOAb30BAHMR OObIYHBIX NPUEIMKEHMIT O MAIOCTH AMILTMTYAbI BO3BY XKaeHMS U
nobasounbIx NpeAnonoxenuit 0 GopMe aAEpHOM CUCTEMbI. B pamxax saepHoit
THAPOAMHAMMKH TIPEACTARNEHBI OCHOBHBIE YPABHEHUS LIS ONTMCAHUS TUTOCKUX
HEJIMHENHBIX RACPHBIX BMXPEi. DBomouns HOPMBI BUXPS aHAJIOIMYHA pach-
POCTPAHEHHIO B ILUTOCKOCTH HEJIMHEMHON AMCMIEPCHOM BOAHBI. DTU COCTOSHHUS
MOryT GbiTh paccMoTpeHs Kak 06obuienne ammmnTuueckx Buxpeit Kupxroda.
[loxa3aHo, 4TO MOryT CyIIECTBOBATL PELIEHUSI, HMEIOLME CHMMETPHIO OTHO-
CHTENbHO 1MOBOPOTa Ha yron 2/l ¢ uensim napamerpom [=2,3,4.... D
BHXPH MOTYT GbITh IBYMEDPHBIMM AHAIOrAMM BPALIAIOLUMXCS UAEPHBIX CHCTEM,
HMEIOUIMX COOTBETCTBEHHO CTAOMIIbHYIO KBaAPYNOJbHYIO, OKTYNObHYIO, MEK-
CanexanoJabHYI0... AeopMaLmu.

Pa6ora Beinonnena 8 JJaGopatopuu teopetuyeckoi ¢pusmxu um.H.H.Boro-
mobosa OUSIU.

1. Introduction

Rotating states were always in the focus of attention of theoretical and
experimental physics [1]. High spin states (e.g., see [2]and reference the-
rein) is the most popular type of the vortical motion in nuclear systems, but
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far from being the only possible one. Many attempts were undertaken to find
topological nontirival vortical states. Vortical isomer nuclei were supposed to
exist [3] (the superconduction component of the nuclear fluid with the
quantum curl was oriented along the symmetry axis of a rotating drop). Not
long ago a supposition close in the physical sense to the above was mentio-
ned again [4]. It was shown that superfluidity caused by triplet Cooper
pairing makes the nuclear liquid anisotropic and also leads to discrete rota-
tional spectra at high excitation energies [§]. The approximate solution to
describe stable vortexes was obtained in the framework of the liquid drop
model. In the first case, the solutions corresponded to the «hot spot», emer-
ged in peripheral collisions [6]. In the second case, the soliton type solu-
tions on a nuclear surface were associated with a cluster type configuration
[7], [8]. The analogy with the admixture electrons and positrons in dense
gases [9], [10] allows us to suppose the existence of the vortical «rings» on
admixture hadrons in nuclear systems.

Recently, nuclear theory has predicted the formation of the new exotic
vortical objects such as «disks» [11], [12], unstable hollow «bubbles» and
«rings» [13] which decay by intermediate mass emission.

In this report we analyse the pure vortical motion excluding the usual
approximation on smallness of the excitation amplitude and the additional
assumptions on the shape of the nuclear system.

In Sec.2 the basic equations to describe plain nuclear vortex are presen-
ted within the nuclear hydrodynamics. Qualitative analysis of the main fea-
tures of a vortes is done in Sec.3. Symmetry of the solutions is considered in
Sec.4. It is shown that there probably exists the possibility to derive the stable
solutions having the symmetry relative to the turn by an angle 27/ with the
integer parameter / = 2, 3, 4... Last Section contains a short Symmary.

2. Basic Equations

We use t,l\1e semiclassical nuclear hydrodynamics based on the current f\
and density p algebra and hydrodynamic representation for the nuclear ha-
miltonian, which is equivalent in view of the equations of motion for f\and ;)\
to the initial hamiltonian. Gradient terms of the «pressure» drop out from
the equations of motion on separating the curl component of the velocity
field and the equations of motion for rot v are formally reduced to the pure
kinematic form, at least for the Skyrme type forces.

For an incompressible (o = P) nuclear vortical flow it is convenient to

turn to the vorticity § and the vector potential A

. d d
v=rotA, divA =0, atC+vrar

149,
C+V¢’;$§—O,
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C=rotv=rotrot A = graddivA — AA = — AA.

We restict ourselves to the simplest rotational flow, two-dimensional motion
vir,¢)=ve+v €0 A = A€, § = e , where (r, ¢) are polar coordinates of

a point. The velocity projections Vy ¥y Can be determined by differentiating

A(r, ¢) with respect to r and ¢: v (r, ¢) = r 134/ 3¢, v 5y #) = — 94/ or.
The current function A(r, ¢) can be derived from the Poisson equation by
the two-dimensional Green function for the Laplace operator A(r, ¢) =
= @) [ dg'dr'r In(Ir — P 1) E(, ).

In this report we consider two-dimensional analogues of the nuclear
«disks» — plane nuclear vortexes — a new type of a pure vortical state of
incompressible nuclear matter. They are the finite areas of the constant
vorticity on a plane {(r', ¢', ¢) = §0 within the uniform-rotating contour
[(r,¢) =r — R(¢) = 0. In essence, these states can be considered as the

generalization of the elliptic Kirchhoff vortex [14]. The dynamical condi-
tion on the contour (n-v) = (n- ¥ ontour) 30d the normal vector n are given by

vIr -
n= Taﬁ =o(e—~S(@)e,) (1 + S@HV2 s@) = %%’

Qd—R+v—v

o : ¢(1 dR)—O,

Rdp) "~
where Q is an angular velocity of the uniform-rotation of the contour and
o = * | defines the orientation of the contour.

Finally the equatin for the vortex boundary may be cast into the form of
the following one-dimensional nonlinear integro-differential equation

2
Zg—f‘;—g = [ d4'R(@") In (13R1) [(1 + 5(¢) 5(¢") sin (#'~ 9) +
+ (5@) = S@) cos (¢' - 9),

where I0RI = (R(¢)*+ R(#")*~ 2R($) R($") cos (¢ — ¢))!2.

3. Qualitative Analysis

For a quantitative analysis of the Eq.(1) it is necessary to build its dis-
crete analogue, that is, in progress. Here we shall present only the qualita-
tive analysis which can be done by analogy with the well-known elliptic
Kirchhoff vortex and the solution for small perturbations of the circle [14].
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(i) Despite the internal part of the vortex is rotating with a constant
angular velocity, this motion differs from the motion of a rigid body, as the
contour is rotating with a different velocity, more slowly.

The small rotationless perturbation of a circle & A(r, @) =

=a(§y/2) R(z)(r/ Ro)lcos(lcp — wt), where [/ is an integer, gives us the follo-
wing contour equation R(¢) = Ry(1 + a cos(ip — w1)) (for a << R;). So the

small perturbation given by trigonometrical functions, is a crimp moving
along the circle vortex with the angular velocity Q = w/I = (I—1)8,/21 At

! = 2 the perturbed shape is an ellipse, rotating about its center with the an-
gular velocity CO/ 4, that is half of the velocity of the fluid into the contour.

Perturbations of the higher symmetry / = 3 are rotating still slower.

(ii) The fixed ratio Q/ §0 and the symmetry of states define completely
the shape of the contour (for instance, for the elliptic vortex its eccentricity
Q/gy=e(1 +¢)72

Eq.(1) together with the definition of the velocity fields will describe the
motion of the contour as the propagation of a nonlinear dispersion wave on a
plane. At the beginning the moving contour will be inevitably distorted.
However, if this state is stable, then the interference between the nonlinea-
rity and the dispersion will lead to the return of the initial contour shape. If
one could prove the existence of these states, then these vortexes will be an
analogue of the solitons on a plane*.

(iii) The parameter Q/ £, will be the bifurcation parameter and will de-

termine the vortex’s stability. The integrals of motion are the square of the
«disk» which is a two-dimensional analogue of the particle number and the
circulation of the vortex defined by EO. If the contour motion is unstable, one

may expect the disintegration of the «disk» into the separate rotating vorte-
xes and into the vortex filaments — two-dimension analogues of the rotating
intermediate mass fragments.

In the next Sec. we will focus our attention on a symmetry of the solu-
tions to Eq.(1).

4. Periodic Solutions

When a << R, a contour velocity depends on the symmetry of a pertur-

bation and the solutions may be classified by the parameter [ = 2,3,4...,0r
by the symmetry relative to the turn by the angle 2/1. Here we shall show

*For a last decade history of a soliton concept in nonrelativistic nuclear physics see review [15].
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that the solutions having a symmetry relative to the turn by the angle 2r/1
can exist. We do not use any additional approximation on smallness of the
excitation amplitude.

Let us prove that the periodic solutions of Eq. (1) can exist at the class of

C}O,Zn] functions.
Eq.(1) may be cast in the following form

2
36 R®) = | do' FR@), R@"), 6. 9. @
0

The necessary condition for an existence of the periodic solutions
R@+T)=R(@¢), T=2x/l, 1=1,2,3... (&)

is the periodicity of the right-hand side of Eq.(2), i.e.

n
{ d¢'F(R@p + T),R(¢'), ¢ + T, ¢') =
2
= { do'F(R(¢), R(¢'), ¢, ¢'), @

because for the periodic function (3) the left-hand side of this equation is a
periodic one

d d
=< R(p + T) = — R(¢). &)
ag R(@ +T) =35 R(@) )
Let us prove the afore-said necessary condition. Let R(¢) be a solution

of Eq.(2) with the property (3). Then from Egs.(1), (3), (5) one has the
equalities

S(¢+T)=S(@), 16RI%p+T,¢'+T)=13RI%p,¢"). (6
Further the following obvious ideritities will be also needed

sin(g + T + ¢') = sin(¢ — ('~ 7)),

cos(p + T + ¢') = cos(g — (¢'— T)). @

The left-hand side of Eq.(4) can be decomposed as the sum of the integrals

2 T 2T 2
Joo=fo+f+..+ [.. ®)
0 0 T Q@-nr

Let us consider the first one and reduce it to the other. Taking into account
Egs.(3), (5), (6) one has
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T
J dp'R(¢") (1/2) In (R¥(#) + R*($') — 2R(¢) R(¢') cos(¢ + T + ¢"))x
0

X (sin(¢p + T +¢') (1 + S(¢) S(¢")) +
toos(¢ + T —¢') (S(#) - S(8))). €

By replacement of the variables ¢t = ¢'— T, and ¢=t + T integral (9) is
written as

A .
S d1(1/2) In (R¥(¢) + R(1) — 2R(¢) R(?) cos(¢ — 1)) x
-T

X (sin(p — £) (1 + S(¢) S(2) + cos(p — 1) (S(¢) — S())).  (10)

(m+1)T
Analogously each integral [ ... of the sum (8) is reduced to the fol-
mT :
lowing integral
mT
[ d¢'F(R(p),R@'), ¢, 9"), m=1,.,n~1. (1D
(m-DT

Thus the following equalities are proved form = 1,..., n — 1

(m+1)T

J d¢'F(R(¢ + T),R(¢"), ¢ + T, ¢') =
mT
mT
= [ dp'F(R(¢). R(¢'). ¢. ") (12)
(m-1)T

Consequently in order to prove the equality (4) one has to show that the
following relation is fulfilled for the integral (10)

0
J dtR(1) (1/2) In((R*(¢) + R*(1) = 2R($) R(f) cos(¢ — £))X

-T
X (sin(¢ — 7) (1 + S(¢) S(1)) + cos(¢ — 2) (S(p) — S(1))) =
nT=2n
= [ dtR(®) (1/2) In((R* (@) + R%(t) — 2R(¢) R(?) cos(¢ — 1)) x
(=0T

X (sin(¢ — 9) (1 + S(¢) (1)) + cos(p — 1) (S(p) — S(1))).

It is obvious because at a circle R = R,= constanarc — T < ¢ < 0 coincides

withanarc(n — 1) T < ¢ < 2.
So Eq.(4) ensues from Eq.(3).



Let us present the periodic solutions for the two utmost cases:

D) n =1, then R(0) = R(27) and R(¢) is just a general solution.

ii) n = =, then R(¢) = R(¢ + 3¢) for any small 3¢, i.e. R(¢) = const is
a circle.

Let us test that a circle R = R, is a solution of Eq.(1). One has
565 R =0, S =0, and Eq.(1) turns a following equality which can be proved.

xn 2 2 2
0= _(];dt Ry(1/2) In(Ry+ Ry— 2Rcos(¢p — 1)) sin(p — 1),

px 4
0 = [ dtIn(2RZ(1 — cos(¢ — 1)) sin(p — ),
0

2T 2
0= [ dtIn(2RY) sin(¢ — #) + [ dtln (1 - cos(g — 1)) sin(¢ — #),
0 0

2n
0= ln(2R(2)) (cos(@) — cos(¢ — 2)) + [ dtIn(1 — cos(¢p — 1)) sin(¢ — 7).
0

2
Now it only remains to show that [ dtIn(1 — cos(¢ — #)) sin(¢ — 1) = 0.
0

Let us denote u = cos(f — ¢), v = In(1 — u). Then one has

2 2o P4
- Jdw' In(l ~w) = —uln(l - )| "+ [ dtun'(1 — u)~'=
0 0

px 4
’ - 2 2t
= - {dtuu (- '=uld+In(1 - w1 F=o0.

This is that we wanted to prove.

5. Summary

We analyze the pure vortical motion in nuclear systems excluding the
usual approximation on smallness of the excitation amplitude and the addi-
tional assumptions on the shape of a nuclear system. The equations to des-
cribe a nonlinear plane nuclear vortex are presented in the frame of nuclear
hydrodynamics. The evolution of the shape of a vortex is analogous to a pro-
pagation of a nonlinear dispersion wave in a plane. These states can be
considered as a generalization of elliptic Kirchhoff vortex. A short qualita-
tive analysis of the main features of the vortex is done.
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We have shown that at the class of C}O - functions the periodic solu-

tions having the symmetry relative to the turn by an angle 2/ with integer
parameter [ = 2, 3, 4... can exist and we have presented two such solutions.
The expected vortexes are two-dimensional analogues to the rotating nuc-
lear systems which have stable quadropole, octupole, hexadecupole defor-
mations accordingly.

Our investigations of the elliptic Kirchhoff vortex in nuclear systems

were stimulated by Prof. Ya.A.Smorodinsky.
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